Uber’s self-driving AI predicts the trajectories of pedestrians, vehicles, and cyclists

Uber’s self-driving AI predicts the trajectories of pedestrians, vehicles, and cyclists

In a preprint paper, Uber researchers describe MultiNet, a system that detects and predicts the motions of obstacles from autonomous vehicle lidar data. They say that unlike existing models, MultiNet reasons about the uncertainty of the behavior and movement of cars, pedestrians, and cyclists using a model that infers detections and predictions and then refines those to generate potential trajectories. Anticipating the future states of obstacles is a challenging task, but it’s key to preventing accidents on the road. Within the context of a self-driving vehicle, a perception system has to capture a range of trajectories other actors might take rather than a single likely trajectory. For example, an opposing vehicle approaching an intersection might continue driving straight or turn in front of an autonomous vehicle; in order to ensure safety, the self-driving vehicle needs to reason about these possibilities and adjust its behavior accordingly. MultiNet takes as input lidar sensor data and high-definition maps of streets and jointly learns obstacle trajectories and trajectory uncertainties. For vehicles (but not pedestrians or cyclists), it then refines these by discarding the first-stage trajectory predictions and taking the inferred center of objects and objects’ headings before normalizing them and feeding them through an algorithm to make final future trajectory and uncertainty predictions. To test MultiNet’s performance, the researchers trained the system for a day on ATG4D, a data set containing sensor readings from 5,500 scenarios collected by Uber’s autonomous vehicles across cities in North America using a roof-mounted lidar sensor. They report that MultiNet ...
More on: venturebeat.com