Marine sponges inspire the next generation of skyscrapers and bridges

Marine sponges inspire the next generation of skyscrapers and bridges

When we think about sponges, we tend to think of something soft and squishy. But researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) are using the glassy skeletons of marine sponges as inspiration for the next generation of stronger and taller buildings, longer bridges, and lighter spacecraft. In a new paper published in Nature Materials, the researchers showed that the diagonally-reinforced square lattice-like skeletal structure of Euplectella aspergillum, a deep-water marine sponge, has a higher strength-to-weight ratio than the traditional lattice designs that have used for centuries in the construction of buildings and bridges. "We found that the sponge's diagonal reinforcement strategy achieves the highest buckling resistance for a given amount of material, which means that we can build stronger and more resilient structures by intelligently rearranging existing material within the structure," said Matheus Fernandes, a graduate student at SEAS and first author of the paper. "In many fields, such as aerospace engineering, the strength-to-weight ratio of a structure is critically important," said James Weaver, a Senior Scientist at SEAS and one of the corresponding authors of the paper. "This biologically-inspired geometry could provide a roadmap for designing lighter, stronger structures for a wide range of applications." If you've ever walked through a covered bridge or put together a metal storage shelf, you've seen diagonal lattice architectures. This type of design uses many small, closely spaced diagonal beams to evenly distribute applied loads. This geometry was patented in the early 1800s by the architect and civil ...
More on: phys.org